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Abstract.A circle action on a Kahler manifold has a momentmap if and only
if it hasfixed points. In this note,wegive examplesto showthat this statement
is not true for ageneral symplecticmanifold, though it doeshold in dimension4.

§ 1. INTRODUCTION

Many problemsin classicalmechanicshavea circular symmetrywhich canbe

usedto reducethe numberof degreesof freedomof the systemby 2. This reduc-
tion is possiblewhen the circle action is Hamiltonian, that is, whenthe inner
producti(~)wof the vectorfield ~which generatesthe actionwith the symplectic
form w is exact.This meansthat there is a function ii (called the moment(or

momentum)map) such that i(~)w= di; and one can then reducethe phase
spaceusingM by the proceduredescribedin [MW]. This function ~uhas many

othergood properties.It is invariant under~ and is a perfectMorse function,
which providesa nice decompositionof the symplecticmanifold (W, w) with one
contribution from eachcomponentof the zero set of ~. (See[F] for example.

Note that zerosof ~ correspondto critical pointsof ~.z,andso alwaysexistwhen
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W is compact).Various other consequencesof the existenceof a momentmap

are discussedby Onoin [0].
In light of this, it is of interest to find conditionswhich guaranteethat a

symplectic circle action be Hamiltonian. Clearly, it suffices that W be simply
connected.Less obviously,it suffices that the circle action extendto the action

of a semi-simpleLie group:see[MW]. In 1959,Frankel[F] discovereda beautiful

theoremwhich appliesin the Kähler case.

FRANKEL’S ThEOREM . A circle action whichpreservesthecomplexstructureand

the Kähler form on a compactKähler manifold W is 1-Jamiltonian if and only if
it hasfixedpoints.

In this note we discussthe extentto which this result remainstrue for a circle

action on a generalcompactsymplectic manifold (W, w). As we seefrom the

following result,some extrahypothesesare neededto ensurethat a circle action
with fixed pointsbe Hamiltonian.

PROPOSITION 1. There is a 6-dimensionalsymplecticmanifold (W, w) with a

symplecticcircleaction suchthat ~haszerosbut i(~)wis not exact.

The proof is given in § §2 and 3. It is basedon an analysisof the structure
of W when ~ doeshave zeros,using a generalizationof the momentmap. We

also show:

PROPOSITION2.No suchexamplecan exist in dimension4.

There is one situation in which it is easy to generalizeFrankel’s theorem.
Let us say that a 2n-dimensionalsymplectic manifold (W, w) has <Lefschetz

type>> if AW’~
1 induces an isomorphismfrom H’(W, IR) to H2’~1(W, IR).

(Kähler manifoldsare well known to satisfy this condition).

PROPOSITION3. ([0]: Thm4.1). A symplecticcircle action on a compactsymplec-
tic manifold of Lefschetztypeis Hamiltonianif and only if it has fixed points.

SKETCH OF PROOF.Considerthe following conditions:
(i) i(E)w is exact;

(ii) ~haszeros;

(iii) the class[~]in H
1 (W, ]R) which is representedby an orbit of ~ is zero.

BecauseW is compactand connected,(i) ~ (ii) ~ (iii). It is nothardto check
that the class [~] in H1 (W, IR) is Poincarédual to [i(E)w’~]. But the Lefschetz

conditionensuresthat [i(~)w° I = 0 if andonly if [i(~)w] = 0.
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Hence(iii) ~ (i), and all threeconditionsare equivalent.

As we seefrom Proposition 1, conditions(i) and (ii) aboveare notequivalent
for a generalsymplectic manifold. Neither are conditions(ii) and (iii): in fact,
we show below that any non-abeliansymplectic nilmanifold has a free circle
action satisfying (iii). (Many such manifolds are known: see [BG] and the re-
ferencestherein). Someother symplectic manifolds which are not nilmanifolds
butwhich admitfree circle actionssatisfying(iii) are describedin [Bou].

PROPOSITION4. Let W be a non-abeliancompactnilmanifold F\G with a homo-
geneoussymplecticform 7~. (This means that r lifts to a left-invariant form

on G). Then (W, r) admits a circle action which satisfiescondition (iii) above

butnot(ii).

Proof. If F\G is a compactnilmanifold, the centerof F is containedin the center
of G, so that each elementof the center of F gives rise to a free circle action
on F\G: see[M]. Clearly, the homogeneousform r is invariant undersuch an

action. If G and F are not abelian,thereis an elementof the centerof F which
lies in the commutatorsubgroup[F, F]. This impliesthat the class[~]represented
by the orbitsof thecorrespondingcircle action is zero.

We end this introductionby pointing out that Proposition4 yields a quick

proof of the following theoremon symplectic nilmanifolds, which was appa-
rently first proved by Koszul (see [H]) and recently rediscoveredby Benson-
Gordon [BG].

PROPOSITION 5. A compactsymplecticnilmanifold of Lefschetztype is a torus.

Proof. Proposition 3 and 4 togetherimply that if the symplectic form w on
W = F\G is homogeneousthen G is abelian. Hence W is a torus.As remarked

in [BG], this argumentmay be extendedto non-homogeneousforms by the
use of Nomizu’s theorem, which says that any cohomology class [w] on F\G
may be representedby a homogeneousform r. For, if the homogeneousform

r is cohomologousto the symplectic form w, the class [r’1] = [w’1] is non-zero.
Becausea top-dimensionalhomogeneousform must either vanish everywhere

or nonwhere,this meansthat r’~ nevervanishes.Hence W has a homogeneous
symplectic form r andwe canapply the previousargumentto (W, r). •

§ 2. THE GENERALIZED MOMENT MAP

In this section we prove Proposition2 and begin the proofof Proposition 1.
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The main idea is to analysewhat happenswhen one passesthrough a critical
level of the (generalized)momentmap. We shall only give a detailedtreatment

of the case when the zero sets Z of ~ have codimension4, sincethis is all we

needhere. Guillemin and Sternberg[GS] havecompleteresultsin the general
case.

We begin by defming the generalizedmomentmap.If the class[i(~)w] isnon-

zero and integral, thereis by [TI a map ~i W -+ 5’ such that i(~)w=

We call ~,1ia generalizedmomentmap for ~. As we will seebelow,it hasmany
of the propertiesof an ordinarymomentmap (andmay even be used to reduce

W). First,weshow:

LEMMA 1. Let w be an S’-invariant symplecticform on W such that Ii(~)~.,]
is non-zero. Then W carries an S

1-invariant symplecticform which admits a

generalisedmomentmap i,L’.

Proof. Observethat the class [i(~)w] is rational if [wl is. For thevalueof [i(~)w~

on a loop X equalsthe value of [wI on the 2-cycle [~~(X): 0 ~ t ~ 1], where

is the flow of ~. Now, if [w] is not rational, thereis alwaysa symplecticform
whose cohomologyclass is rational and which is so closeto w that its average

over ~1 is symplecticand satisfies [i(E)2’] ~ 0. Thus a multiple of c2 admits
a generalizedmomentmap.

Clearly,the critical pointsof i,li are exactlythe zerosof ~.

LEMMA 2. The set of critical points of i~i is a disjoint union ofsymplecticsub-
manifoldsof W eachof codimensionat least4.

Proof. First observethat thereis always an S1-invariantRiemannianmetric g on
W which is compatiblewith w in the sensethat g(. , .) = w(. , J.), whereJ is
an S1-invariant almost complex structure on W. (Such a metric is sometimes
called an almost Kähler metric). This follows becauseany S1-invariantmetric

~ is relatedto w by the identity ~(. , .) = w(. , A .), for a uniqueA which is

non-singular,skew-symmetricandS1-invariant.Then— A2 = Ais positivedefinite
andS’-invariant,andsog(. , .) = j(. A’12A .) hasthe desiredproperties.

If we now identify S1 with IR/7L in the usualway, wemay definethe gradient
vector field of tj with respectto g. It is easy to check that this is justJ~,so

tilat it commuteswith ~. (Observethat [~,J~}= £~(J~)= £
1(J)~+ LC~JI= 0).

This flow hasall the nice propertiespossessedby the gradientflow of an ordinary

momentmap.:see[F]. In particular,its critical set is a disjoint unionof symplec-
tic submanifoldsZ. The normal bundle of Z has a complexstructureinducedby
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J and splits as a sum p~ ® ~ where i
1 is tangentto theincomingflow linesof

J~(i.e. the stablemanifold) and is the subbundlewhere the S1-actionrotatesin
the anticlockwisedirection. Thus the indices of the critical submanifoldsare all

even: in particular, there are no critical submanifoldsof index or co-index 1.
As noted by Atiyah in [A], this implies that the numberof componentsof the
level sets of ,~1i changesonly when one passesa local maximum or minimum.

Becausethe map ~,L’is essential,it follows easily that the numberof components
is constant.Thus ~,1ihas no local maxima or minima, and the codimensionof

eachZ is least4. U

Let us now specializeto the casewhen dim W = 4. Then eachcritical point
is isolated, and has a neighbourhoodof the form D2 x D2 with S1-actiongiven
by (z, w) -÷ (e21n1POz,e21~~°w),where D2 is a little disc with center0 in (t,
and p and q are greaterthan 0. Such a point will be said to havetype (p. q)’.

The non-critical level setsF of ,Ji areS1-invariant,and the quotientmap ir : F -~

-÷ F/S’ is a Seifertfibration whosebaseB = F/S1 is an orbifold (or V-manifold).
This meansthat B is a topological2-manifoldwhich hasa differentiablestructure

with a finite numberof conicalsingularities.As onepassesa critical level in the

direction of J~,F changesby a finite numberof surgeries,eachgiven by attaching
the above3-sphere a(D2 x D2) equivariantly to F along (aD2) x D2. It is pos-

sible to assign to eachSeifert fibration ir : F ~ B a rational numberx(F) called
the Euler number which generalizesthe usual Euler numberof a circle bundle
overa 2-manifold.We claim:

LEMMA 3. Let F
2 be obtainedfrom F, by one surgery of type (p, q). Then

~(F2) = x(F1) — l/pq.

Proof. According to [Th], one can calculatex(F) as follows. Choosean S
1-inva-

riant 1-form a such that a(s) = 1 everywhere.Then x(F) is just the integral
of — a i~da over F. One mustbe careful about orientationshere.We will orient
F so that the vectors~, v

1,v~form a positively orientedbasison F if and
project to a positively orientedbasis on B. Then, the abovedefinition of x(F)
agreeswith the usualonewhenF -~ B is a fibration,sincein this case— da pushes
down to a 2-form on B which representsthe first Chernclass.

Now, a can be constructedas a sum ~(p1 o ir)31, where [p1] is a partition
of unity of B subordinateto some covering U~and the are suitable 1-forms
on the sets ir

1 (U
1). In particular, one can choosea1 on F, so that it equals

dO/p in the image of (aD
2) x D2, where we use the polar coordinates(r, 0)

and (p, ~)in the two copiesofD2,norrnalisedso that 0 ~ 0, ~ 1. Thus (aD2) x

x D2 doesnot contributeto ~(F,). Next observe that F
2equalsF1with (aD

2) x
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x D2 replaced by D2 x (aD2). Let a
2 equala1 outsideD

2 x (aD2),andequal~
insideD2 x (aD2) where

(3=X(y)dO/p—(l —X(’Y))d4/q,

and where X is a smooth function which is 0 nearr = 0 and 1 nearr = 1. Then
= 1 and the integralof ~ A d(3 over D2 x (aD2) is l/pq. (Note that the D2

factor in D2 x (aD2~has theusualorientation,sincetherestrictionof w to thediscs
D2 x Pt C F

2 is symplectic. However, ~D
2 is orientedaccordingto the action

of 5’, so that the integralof dØ over pt x (aD2) is — 1).

Proofof Proposition2.

Supposethat (W, w) is a 4-dimensionalsymplecticmanifold with an S’-action

suchthat i(~)wis notexact.By Lemma 1 we may assumethat w hasa generalized
momentmap i,li. Consider the regular level sets F

5 = ~ (s) as s moves around
S’. Clearly, x(F1) is constantexcept when s passesthrough a critical point in

which case,by Lemma 3, it decreases.Since after going round the whole circle

onemusteventuallyreturnto the start,therecannotbe any critical pointsat all..

Let us now go back to the generalcase and look at the structurenear the

regularpoints of i~.For simplicity, we will assumethat thereare no finite iso-
tropy groups.LetS C S~be a connectedarc consistingof regularvaluesof iii.

Then., for each s ES, the level set F5 = iii’ (s) is diffeomorphic to the total

space F5 of a circle bundleir F5 -+ B, whosefirst Chern class we will call c5.
Moreover, ~,1’~’(5) is S’.equivariantly diffeomorphic to F5 x 5, and any S

1-inva-

riant symplectic form w on Vi~1(S)with momentmap ~1imay be written as:

w = ir*(r) + A ds (a)

where r
5 is a family of symplectic forms on B and is a family of S’ -invariant

1-forms on F5 with 13~(~)= 1. As in Lemma 3, each df35 is pulled back from a
form on B which representsthe cohomology class — c~,.Further, because
w is closed, d/ds (7r*T) = — dj

3r = — ~‘ Therefore,for s and I in5, we have

[re] = [ri] + (t—s)c,. (b)

(See [DH]). Conversely,given any family of symplecticforms on the baseB

which satisfy (b), one can, by [K], find 1-forms f3~on F
5 for which d135 =

— —~- (lr* r ). Then formula (a) definesan S~-invariant symplectic form w
ds

on l~1~(5) with momentmap i,li.

LEMMA 4. w is determinedby the forms r up to an S
1-equivariantdiffeoinor-

phismwhichpreservesthe levelsetsof Iji.
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Proof. Different choicesof the (3, differ at most by a family of forms

whereeach is closedon B. Thereforethe forms

= ir*(r) + (33 A ds + tlr*(ii,) A ds

are symplectic for 0 ~ t ~ 1, and it sufficies to constructa family g
1 of S’ .equi-

variant diffeomorphisms of li~~(5) which preservethe fibers F, and are such
thatg~*(w~)= w0. Now,

~ (we)= ~*(~) A ds = d[~*(X,)J where X, = ( ~dr.
di’ J

Let ~, be the vector field on B such that i(~,)r, + X, = 0, and for each t let
be the uniquelift of ~, to F, which liesin the kernelof the 1-form/3, + tlr*(rl,).

Then, for each t, the ~ fit together to form an S
1-invariant vector field

~ ~,1i’(0) suchthat

d[i(~t)w] + ~_(~~) = 0.

It follows that the flow of ~ hasall the desiredproperties. U

Finally, let us look at what happensin a neighbourhood P of a critical sub-
manifold Z of codimension4. We will supposethat P i~LI~([A — a, A + a]),

whereA is a critical value,andwrite F, = ,,j~.1(s) as before.

LEMMA 5 (i). If Z has codimension4 and there are no finite isotropy groups,
then the basemanifoldsF/S’ , 5 ~ A, are all diffeomorphic, to B say. Moreover

theprojectionsF
5 -+ Bfit togetherto give asmooth map ~ : P -~ B.

(ii) Let c, denotethe Chern class ofF -+ B. Then c~+ = cx_e —D(Z), where

D(Z) is thePoincarédual of Z in B.

Proof (i). It suffices to prove the secondstatement.We will use the notation
of Lemma 2. Observefirst that a neighbourhoodU of the zero section in the
normal bundle ~ = ~ ~ of Z in P has a symplecticform r, which is invariant
under the structuregroup 5’ x S

1 and which restrictson each fiber to i/2[du A

A du + dv A thi], where (u, v) are coordinateson the fibers if 0 if . The equiva-
riant symplectic neighbourhoodtheorem then implies that a neighbourhood
N(Z) of Z in P is equivariantlysymplectomorphicto (U, r ) with its obvious

circle action. If we now chooseJ on N(Z) so that it restrictson each fiber to
multiplication by i, thevector field J~is just — p~~ p~,wherep andp~arethe
radial fields Re(ua ) andRe(va).

Now, let S(Z) C P be the set of points which flow into Z underJ~,so that
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5(Z) fl N(Z) C v~~ 0. Then we can definea smoothmap i1 from P — S(Z) to B

by flowing a point x alongJ~until it reachesF and then projectingit to B.
This extends continuouslyto P since each S1-orbit in S(Z) correspondsto a

unique point of Z and hence to a uniqueS’-orbit in Fe• It obviously suffices
to check smoothnessneara point z E Z. But, the normal bundle of *(Z) in B

is clearly v~ v+ and one cancheck,usingthe explicit formula for J~above,
that themap~on N(Z)is given by (z, u, v) -+ (z, uv),which is smooth.

(ii) When dim W = 4, this was provedin Lemma3. The proof of the general
caseis similarandwill beleft to the reader.

This lemma gives us some idea of what the exampleof Proposition I must

look like. For supposethat (W, w) is a symplectic manifold with an S1-action
which has no finite isotropygroupsand whosecritical manifolds Z

1 all have co-
dimension 4. If the action is not Hamiltonian,we may assumeby Lemma I

that there is a generalizedmomentmap I,~J : W -~ S’. If in addition one of the

Chern classes~ vanishes,then Lemma 5 implies that the sum of the D(Z1)’s
must vanish. In particular,the Z1 cannotbe r,-symplecticfor all s, eventhough

each Z1 is r,-symplectic for s nearthe correspondingcritical level A1. Thus,the
mustvary significantly ass goesround the circle. Note that this cannothappen

when W is Kähler and ~ is holomorphic,since in that caseJ~is holomorphic

too, and the reducedspaceB has an inducedcomplex structurewith respect
to which the forms r3 areKähler and the manifoldsZ1 holomorphic.

§3.THE 6-DIMENSIONAL EXAMPLE

We construct a symplectic manifold (X, w), which admits a circle action
with momentmap ~z: X -÷ [0, 7]. The manifoldXhastwoboundarycomponents

which lie over the endpoints0 and 7, andwe form W by glueing them together.
Further,X hasfour critical levelsat s = 1, 2, 5 and 6 with zerosetsof codimension

4,andno finite isotropygroups.Therefore,by Lemmas4 and5,X projectssmoothly
onto the basemanifoldB, and to describew we needonly define a suitablefamily

of symplectic forms on B for regular valuesof s, and then describewhat
heppensnearthe singularlevels.

Let B = T
4 with coordinatesx1, x2, x3, andx4, and denotethe form dx’ A

A dx~by a~.Then the forms r and Chern classesc
5 are listed below, where

K > 2 will be chosenlater. We also list relevantdataat the singularfibers, using

the notationL~1to denotea 2-torus on which the two coordinatesother than
x
1 andx are constant.
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forsE [0, 1), r, =Ko
12+ Ku34 +20~3+ 2042,

ats= 1, Z=L13, D4Z)[a421

forsE(l,2), T =‘~12 +Ko~+2013 +(3—s)o42, c5 —[0421

ats=2, Z=L42, D(Z)=[o,31

forsE(2,5), Ti =Ko12 + Ku34 +(4—s)o,3 +(3—s)o42, C5 =—[o3,+u42]

ats=5, Z=L31, D(Z) —[0421

forsE(5,6), T1 =Ko12 +Ku~+ (45)013—2042, ~

ats=6, Z=L24, D(Z) = — [u~3I

for sE (6, 7], ‘r, = Ku12 + Ku34 —2013 —2042. C5 = 0.

It is easy to check that this information is all compatible.Note also that,

for S = [0, 1) and(6, 7], ~c.C
1(0) is the product T4 x 51 x Swith form w equal

eitherto (Ku
12 + Ku34 + 2013 + 2042) 0 dO A ds or to (Ku12 + Ku~+ 2031 +

+ 2024) e dO A ds. Hence1r’ (0) may be gluedto jf~~(7) by the diffeomorphism
ofT

4 which interchangesx’with x3 andx2 with x4.

We next describewhat happensnearthe critical levels. For A = 1, 2, 5 and

6 we will constructa piece P~of symplecticmanifold which lies over [A — a,
A + a] and glues to the parts of X which are alreadydefined. By Lemma4, P~
will glue to X provided that the formsT

1 on the baseagree.In fact, it suffices

to do this at A = 1 and 2 since the diffeomorphismof T
4 which interchanges

x1 with x4 andx2 with x3 takesT, to — r
7~.Thus the singularityassincreases

through 1 is diffeomorphic to the singularity as s decreasesthrough6, andsimi-

larly for 2 and 5.

Thesingularity ats =

We define P1 as a product L13 x Y where Y is a 4-dimensionalsymplectic

manifold with an S
1 action which has a point singularity. To constructY, let

us first considerthe manifold ~2 with a symplectic form p of total areaI which
is invariant under the usual action of S1 by rotation. Then the momentmap

takes~2 onto [0, 1] and has one minimumatm say,and one maximumatM.
Next considerS2 x S2 with symplectic form 2p

1 ~ p2, where p1 and p2 are
copies of p, and with the diagonal action of S~. Then the momentmap ~t is
2~z~+ M2 where p1 is the momentmap for the ith factor with respectto p1.
There are now four fixed pointswhich occurat 0, 1, 2, and 3 in the order mx m,

m x M, M x m and M x M. It is easyto check that the level sets for s between
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1 = p(m x M) and 2 = p(M x m) are diffeomorphic to ~1 x ~2 since,for each

point on the secondspherethereis a circle of possiblepointson the first sphere.
Thus the correspondingcircle bundle is a product. In contrast, the level sets
for s > 2 are 3-spheres,and, by Lemma 3, the circle bundle has Euler characte-

ristic — 1. Set V = p~([2 — e, 2 + a]) C S
2 x ~2 with the inducedsymplectic

form, where 0 < a < 1. By Lemma5, V projects ontoS2. Cut out from V the
inverse image of a 2-disc in S2 which avoids the unique critical value of this

projection. This inverseimage is an 51-invariantset diffeomorphic to D2 x S’ x

x [— a, a] with product symplectic form, and we may glue back in its place a
copy of (T2 —Int(D2))x S1 x [—e,c] with product symplectic form undO A ds.

This last is the manifold we call Y. Note that Y fl
1i.r’ ([— a, 0)) is a product

x S
1 x [— c, 0). Clearly, we may choose a so that the induced symplectic

form a on Y integrates to 1 over T2 x pt. x [— a]. It follows from formula (b)
above that, when s > 0, the induced form T

1 on the base T
2 has integral 1 — s.

By Lemma 5, thereis a smoothmap ~ of Y onto T2 x [— e, a] whosefibers

are the orbits of S’. Thus, if x4 and x2 are coordinates on T2 the forms dx4

and dx2 pull back to 1-forms which we will call a4 anda2 on Y. Wenow set
P

1 equal to the product T
2 x Y with symplectic form w~= Kdx1 A ~ +

+ Kdx3 A Cl4 + 2dx1 A dx3 + 2~,wherex1 andx3 are the coordinates on the
first T2-factor. It is easy to check that w~is indeed symplectic. Moreover P

1

does glue to X. As the notation indicates, the T
2 factorin P

1 should be identified

with L13 in T4 andthe baseT
2 of V with L

42.

The singularityat s = 2

This time v is not trivial, for the circle bundleS(zr) —~Z = L42 may beiden-

tified with the restriction of the bundle F, —~ to L42, and so it has Euler

characteristic— 1. We put P2 = S(i.r) x Y, so that P2 fibers over L42 with
S . . . 1

fiber Y. The quotient space of P2 by the 51 -action is the manifold L42 x T- x

x [— c, a], and it is easy to check that the Chernclass of the S
1 -bundle at — e

is — [042] while that at e is — [~42 + 013], where we identify the T2 factor

with L
13. We will denotethe lift of the formsdx’ to P2 by a’, for i = 1,. . . , 4.

Our next task is to extend the form ~ over P2. Note that~ — a
1 A Cl3 is exact,

so.that it may be written as d’y for some 1-form ‘y which we may chooseto vanish

at the uniquesingularpoint of Y. Considerthe 1-form

p = ~
1(A1o pr) ‘yr,

on F2, where pr is the fibration P2 —~L42, [A1]is a partition of unity subordinate

to a trivializing cover [U1] for this fibration, and is the pull-back to U1 x V
pr~(U1) C P2 of ‘y. Since thelocal trivializations mustfixed the uniquecritical
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point in each fiber, i(v) dp = 0 for any vectorv tangentto Z. Also, dp restricts

too—cr1 ACl3 on eachfiber Y.
Now considerthe form

= Ka1 I\ a2 + Ka3 A Cl4 + 2cr1 A a3 + Cl4 A Cl2 + 2dp

on P
2. We claim that, if K is sufficiently large,this is symplectic.Forit is clearly

non-degenerateon the restriction of Ti’2 to Z, and hence nearZ. And, away

from Z, one can use the argument of [McD 2] Lemma 3.3. Further, one can
check directly that the reducedforms i~,on thebaseL42 x L13 are cohomologous

to T2 ~ for — a <s < 0. It follows from Lemma 5 that this must also hold
for 0 <s < a. Since — T2+, dependsonly on dp, one can choosealarge
K so that the forms t i~,+ (1 — t) T2~5are symplectic for t between0 and 1

and s between— a and — a/2 and�12and a. Moser’s theoremthen implies that
the forms i~,and T2~, are diffeomorphic for eachsin the given range,so that

canbe patchedto X asrequired.

This completesthe construction,andhencethe proofof Proposition1.
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