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Abstract. A circle action on a Kdhler manifold has a moment map if and only
if it has fixed points. In this note, we give examples to show that this statement
is not true for a general symplectic manifold, though it does hold in dimension 4.

§1. INTRODUCTION

Many problems in classical mechanics have a circular symmetry which can be
used to reduce the number of degrees of freedom of the system by 2. This reduc-
tion is possible when the circle action is Hamiltonian, that is, when the inner
product i(§)w of the vector field £ which generates the action with the symplectic
form w is exact. This means that there is a function u (called the moment (or
momentum) map) such that i(¥)w = du; and one can then reduce the phase
space using u by the procedure described in [MW]. This function g has many
other good properties. It is invariant under §; and is a perfect Morse function,
which provides a nice decomposition of the symplectic manifold (W, w) with one
contribution from each component of the zero set of £. (See [F] for example,
Note that zeros of £ correspond to critical points of u, and so always exist when
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W is compact). Various other consequences of the existence of a moment map
are discussed by Ono in [O].

In light of this, it is of interest to find conditions which guarantee that a
symplectic circle action be Hamiltonian. Clearly, it suffices that W be simply
connected. Less obviously, it suffices that the circle action extend to the action
of a semi-simple Lie group:see [MW]. In 1959, Frankel [F] discovered a beautiful
theorem which applies in the Kahler case.

FRANKEL’S THEOREM. A circle action which preserves the complex structure and
the Kdhler form on a compact Kéihler manifold W is Hamiltonian if and only if
it has fixed points. .

In this note we discuss the extent to which this result remains true for a circle
action on a general compact symplectic manifold (W, w). As we see from the
following result, some extra hypotheses are needed to ensure that a circle action
with fixed points be Hamiltonian.

PROPOSITION 1. There is a 6-dimensional symplectic manifold (W, w) with a
symplectic circle action such that & has zeros but i(§)w is not exact.

The proof is given in §§2 and 3. It is based on an analysis of the structure
of W when { does have zeros, using a generalization of the moment map. We
also show:

PROPOSITION 2. No such example can exist in dimension 4. m

There is one situation in which it is easy to generalize Frankel’s theorem.
Let us say that a 2n-dimensional symplectic manifold (W, w) has «Lefschetz
type» if Aw™ 1 induces an isomorphism from HI(W, R) to H"-"-l(w, IR).
(Kihler manifolds are well known to satisfy this condition).

PROPOSITION 3. ([0O]:Thm 4.1). A symplectic circle action on a compact symplec-
tic manifold of Lefschetz type is Hamiltonian if and only if it has fixed points.

SKETCH OF PROOF. Consider the following conditions:
(1) i(¥)w is exact;
(ii) & has zeros;
(iii) the class [£] in H| (W, R) which is represented by an orbit of & is zero.
Because W is compact and connected, (i) = (i) = (iii). It is not hard to check
that the class [£] in HI(W, R) is Poincaré dual to [i(¥)cw" 1. But the Lefschetz
condition ensures that {i(§)w"] = 0 if and only if [i(§)w] = 0.
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Hence (iii) = (i), and all three conditions are equivalent. n

As we see from Proposition 1, conditions (i) and (ii) above are not equivalent
for a general symplectic manifold. Neither are conditions (ii) and (iii): in fact,
we show below that any non-abelian symplectic nilmanifold has a free circle
action satisfying (iii). (Many such manifolds are known: see [BG] and the re-
ferences therein). Some other symplectic manifolds which are not nilmanifolds
but which admit free circle actions satisfying (iii) are described in [Bou].

PROPOSITION 4. Let W be a non-abelian compact nilmanifold T\G with a homo-
geneous symplectic form t1. (This means that 7 lifts to a left-invariant form
on G). Then (W, 7) admits a circle action which satisfies condition (iii) above
but not (ii).

Proof. If T\G is a compact nilmanifold, the center of I"is contained in the center
of G, so that each element of the center of I' gives rise to a free circle action
on I'\G: see [M]. Clearly, the homogeneous form 7 is invariant under such an
action. If G and T" are not abelian, there is an element of the center of I which
lies in the commutator subgroup [I', T']. This implies that the class [£] represented
by the orbits of the corresponding circle action is zero. L]

We end this introduction by pointing out that Proposition 4 yields a quick
proof of the following theorem on symplectic nilmanifolds, which was appa-
rently first proved by Koszul (see {H]) and recently rediscovered by Benson-
Gordon [BG].

PROPOSITION 5. A compact symplectic nilmanifold of Lefschetz type is a torus.

Proof. Proposition 3 and 4 together imply that if the symplectic form w on
W = I'\G is homogeneous then G is abelian. Hence W is a torus. As remarked
in [BG], this argument may be extended to non-homogeneous forms by the
use of Nomizu’s theorem, which says that any cohomology class [w] on I'\G
may be represented by a homogeneous form 7. For, if the homogeneous form
7 is cohomologous to the symplectic form w, the class [7"] = [w"] is non=zero.
Because a top-dimensional homogeneous form must either vanish everywhere
or nonwhere, this means that 7" never vanishes. Hence W has a homogeneous
symplectic form 7 and we can apply the previous argument to (W, 7). =

§2. THE GENERALIZED MOMENT MAP

In this section we prove Proposition 2 and begin the proof of Proposition 1.
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The main idea is to analyse what happens when one passes through a critical
level of the (generalized) moment map. We shall only give a detailed treatment
of the case when the zero sets Z of § have codimension 4, since this is all we
need here. Guillemin and Sternberg [GS] have complete results in the general
case.

We begin by defining the generalized moment map. If the class [{(¥)w] is non-
zero and integral, there is by [T] a map ¥ : W — S1such that i(§)w = Y*(ds).
We call y a generalized moment map for w. As we will see below, it has many
of the properties of an ordinary moment map (and may even be used to reduce
W). First, we show:

LEMMA 1. Let w be an S'invariant symplectic form on W such that [i(§)w]
is non-zero. Then W carries an S'-invariant symplectic form which admits a
generalised moment map .

Proof. Observe that the class [i(§)w] is rational if {w]is. For the value of [i(§)w]
on a loop A equals the value of [w] on the 2-<cycle [¢t()\): 0 < ¢t < 1], where
¢, is the flow of &. Now, if [w] is not rational, there is always a symplectic form
whose cohomology class is rational and which is so close to w that its average
& over S!is symplectic and satisfies [i(£)®] # 0. Thus a multiple of & admits
a generalized moment map. a

Clearly, the critical points of  are exactly the zeros of &.

LEMMA 2. The set of critical points of y is a disjoint union of symplectic sub-
manifolds of W each of codimension at least 4.

Proof. First observe that there is always an Sl-invariant Riemannian metric g on
W which is compatible with w in the sense that g(. , .) = w(. , J.), where J is
an S'-nvariant almost complex structure on W. (Such a metric is sometimes
called an almost Kihler metric). This follows because any Slinvariant metric
g is related to w by the identity g(. , .) = w(., A .), for a unique A4 which is
non-singular, skew-symmetric and Sinvardant. Then — A% = Ais positive definite
and Skinvariant, and so g(. , .) = 3(. , A"Y24 ) has the desired properties.

If we now identify S! with IR/Z in the usual way, we may define the gradient
vector field of ¢ with respect to g. It is easy to check that this is just J§, so
that it commutes with £. (Observe that [§, J&} = ,CE(JE) = ,CE(J)E + JGCE‘g’ = 0).
This flow has all the nice properties possessed by the gradient flow of an ordinary
moment map.: see [F]. In particular, its critical set is a disjoint union of symplec-
tic submanifolds Z. The normal bundle of Z has a complex structure induced by
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J and splits as a sum v~ @ p* | where v™ is tangent to the incoming flow lines of
JE (i.e. the stable manifold) and is the subbundle where the Slaction rotates in
the anticlockwise direction. Thus the indices of the critical submanifolds are all
even: in particular, there are no critical submanifolds of index or codndex 1.
As noted by Atiyah in [A], this implies that the number of components of the
level sets of Y changes only when one passes a local maximum or minimum.
Because the map VY is essential, it follows easily that the number of components
is constant. Thus ¥ has no local maxima or minima, and the codimension of
each Zis least 4. ]

Let us now specialize to the case when dim W = 4. Then each critical point
is isolated, and has a neighbourhood of the form D? x D? with Skaction given
by (z, w) — (ez”"poz, e*z""qew), where D? is a little disc with center 0 in C,
and p and ¢ are greater than 0. Such a point will be said to have type (p, q).
The non-critical level sets F of  are Sl-invariant, and the quotient map 7 : F -
— F/S'is a Seifert fibration whose base B = F/S!is an orbifold (or V-manifold).
This means that B is a topological 2-manifold which has a differentiable structure
with a finite number of conical singularities. As one passes a critical level in the
direction of J¢, F changes by a finite number of surgeries, each given by attaching
the above 3-sphere (D% x D?) equivariantly to F along (8D?) x D?. It is pos-
sible to assign to each Seifert fibration 7 : F > B a rational number x(F) called
the Euler number which generalizes the usual Euler number of a circle bundle
over a 2-manifold. We claim:

LEMMA 3. Let F, be obtained from F,| by one surgery of type (p, q). Then
x(F,) =x(F) - l/pq.

Proof. According to [Th], one can calculate x(F) as follows. Choose an S'-inva-
riant l-form « such that a(() = 1 everywhere. Then x(F) is just the integral
of — a n da over F. One must be careful about orientations here. We will orient
F so that the vectors &, v, , v, form a positively oriented basis on F if v, and v,
project to a positively oriented basis on B. Then, the above definition of x(F)
agrees with the usual one when F — B is a fibration, since in this case — do pushes
down to a 2-form on B which represents the first Chern class.

Now, « can be constructed as a sum Z(p; o m)B;, where [p;] is a partition
of unity of B subordinate to some covering U, and the B; are suitable 1-forms
on the sets ﬂ'_l(Ul.). In particular, one can choose @, on F1 so that it equals
df/p in the image of (3D?) x D?, where we use the polar coordinates (r, 8)
and (p, ¢)in the two copies of D? ,normalised so that 0 < 6, ¢ < 1. Thus (BDZ) X
x D? does not contribute to X(F,). Next observe that F,equals F1 with (3D?) x
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x D? replaced by D? x (0D?). Let o, equal a; outside D? x (3D?), and equal
inside D? x (apz) where

B =) db/p — (1 —NY))dd/q,

and where A is a smooth function which is O near r = 0 and 1 near r = 1. Then
B(¢) = 1 and the integral of 8 A df over D? x @D?) is 1/pg. (Note that the D?
factor in D? x (3D?) has the usual orientation, since the restriction of w to the discs
D? x pt CF 5 is symplectic. However, 9D? is oriented according to the action
of S, so that the integral of d over pt x (8D?)is — 1). n

Proof of Proposition 2.

Suppose that (W, w) is a 4-dimensional symplectic manifold with an Slaction
such that i(§)w is not exact. By Lemma 1 we may assume that w has a generalized
moment map . Consider the regular level sets F’ = xl/'l(s) as s moves around
S!. Clearly, x(F’) is constant except when s passes through a critical point in
which case, by Lemma 3, it decreases. Since after going round the whole circle
one must eventually return to the start, there cannot be any critical points at all. =

Let us now go back to the general case and look at the structure near the
regular points of . For simplicity, we will assume that there are no finite iso-
tropy groups. Let £ C 5! be a connected arc consisting of regular values of .
Then, for each s €.#, the level set F, = Vv~1(s) is diffeomorphic to the total
space F of a circle bundle 7 . F - B whose first Chern class we will call c,-
Moreover vl is S]-equlvarlantly diffeomorphic to F, x.#, and any Slinva-
riant symplectic form w on Y~ ! (#) with moment map L]/ may be written as:

w=7*(r,) +f, Ads (a)

where 7 is a family of symplectic forms on B and Bs is a family of S!-nvariant
1-forms on F with B () = 1. As in Lemma 3, each dB is pulled back from a
form vy, on B which represents the cohomology class — ¢, Further, because
w 1is closed d/ds (w*1) = — dB, = — v,- Therefore, for s and r in #, we have

[rI=1[r]+C-95c,. (b)

(See [DH]). Conversely, given any family of symplectic forms 7, on the base B

which satisfy (b), one can, by [K], find 1-forms 6J on Fj for - which dﬁs =
d

- o (7* 7.). Then formula (a) defines an S!invariant symplectic form w
s

on ¥~ (#) with moment map .

LEMMA 4. w is determined by the forms T, Up to an Sl-equivariant diffeomor-
phism which preserves the level sets of .
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Proof. Different choices of the B, differ at most by a family of forms 7*(n,),
where each n, is closed on B. Therefore the forms

w, =7%r)+ B, Ads+ tn*(n) A ds

are symplectic for 0 < ¢ < 1, and it sufficies to construct a family g, of §1 equi-
variant diffeomorphisms of ! (#) which preserve the fibers F’ and are such
that gt*(wt) = w,. Now,

4
a (wt) = 7T*(17,) Ads = d[w*()\’)] where A, =f n, dr.
dt

Let { be the vector field on B such that i(§‘,)1 ¢ T A, =0, and for each ¢ let
§'§ be the unique lift of { to FS which lies in the kernel of the 1-form 8, + t1r*(n’).
Then, for each ¢, the §§ fit together to form an S!-invariant vector field
¢F-on Y1 (#) such that

ptn d -
dli¢") w ]+ E‘(wt) =0.

It follows that the flow g . of ! has all the desired properties. =

Finally, let us look at what happens in a neighbourhood P of a critical sub-
manifold Z of codimension 4. We will suppose that P = Y"1 (A — e, X + €]),
where A is a critical value, and write Fs = w"l (s) as before.

LEMMA 5 (). If Z has codimension 4 and there are no finite isotropy groups,
then the base manifolds F, /St s # \ are all diffeomorphic, to B say. Moreover
the projections F| —> B fit together to give a smooth map @ : P B,

(ii) Let ¢, denote the Chern class of F, > B. Then Chpe =C
D(Z) is the Poincaré dual of Z in B.

A—e — D(2), where

Proof. (i). It suffices to prove the second statement. We will use the notation
of Lemma 2. Observe first that a neighbourhood U of the zero section in the
normal bundle » = v~ ® v* of Z in P has a symplectic form 7, which is invariant
under the structure group S!x S! and which restricts on each fiber to i/2[du A
A di + dv A du], where (i, v) are coordinates on the fibers € ® € . The equiva-
riant symplectic neighbourhood theorem then implies that a neighbourhood
N(Z) of Z in P is equivariantly symplectomorphic to (U, 7 ) with its obvious
circle action. If we now choose J on N(Z) so that it restricts on each fiber to
multiplication by i, the vector field J£ is just — P, ©P, where P, and p, are the
radial fields Re(u au) and Re(vau).

Now, let S(Z) C P be the set of points which flow into Z under J§, so that
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S(Z) N N(Z) C v~ & 0. Then we can define a smooth map 7 from P — S(Z) to B
by flowing a point x along J¢ until it reaches F_ and then projecting it to B.
This extends continuously to P since each Slorbit in S$(Z) corresponds to a
unique point of Z and hence to a unique S'-orbit in F,. It obviously suffices
to check smoothness near a point z € Z, But, the normal bundle of #(Z) in B
is clearly »~ @ »* and one can check, using the explicit formula for J¢ above,
that the map % on N(Z) is given by (z, u, v) = (z, uv), which is smooth.

(ii) When dim W = 4, this was proved in Lemma 3. The proof of the general
case is similar and will be left to the reader. =

This lemma gives us some idea of what the example of Proposition 1 must
look like. For suppose that (W, w) is a symplectic manifold with an Slaction
which has no finite isotropy groups and whose critical manifolds Z, all have co-
dimension 4. If the action is not Hamiltonian, we may assume by Lemma 1
that there is a generalized moment map ¥ : W — S.L If in addition one of the
Chern classes ¢ vanishes, then Lemma 5 implies that the sum of the D(Zi)’s
must vanish. In particular, the Zi cannot be Ts-symplectic for all s, even though
each Z; is 7 -symplectic for s near the corresponding critical level A;. Thus, the
7, must vary significantly as s goes round the circle. Note that this cannot happen
when W is Kihler and £ is holomorphic, since in that case J§ is holomorphic
too, and the reduced space B has an induced complex structure with respect
to which the forms 7 are Kihler and the manifolds Z, holomorphic.

§3. THE 6-DIMENSIONAL EXAMPLE

We construct a symplectic manifold (X, w), which admits a circle action
with moment map u : X — [0, 7]. The manifold X has two boundary components
which lie over the endpoints 0 and 7, and we form W by glueing them together.
Further, X has four critical levels at s = 1, 2, 5 and 6 with zero sets of codimension
4,and no finite isotropy groups. Therefore, by Lemmas 4 and 5, X projectssmoothly
onto the base manifold B, and to describe w we need only define a suitable family
of symplectic forms 7, on B for regular values of s, and then describe what
heppens near the singular levels.

Let B = T* with coordinates xl, xz, x3, and x4, and denote the form dx’ A
A dx! by 0y Then the forms 7, and Chermn classes ¢, are listed below, where
K > 2 will be chosen later. We also list relevant data at the singular fibers, using
the nota’tion Lt.j to denote a 2-torus on which the two coordinates other than
x' and x’ are constant.
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forse [0, 1), T, =K012+ Ka34 + 2013 + 2042, ¢ = 0

ats=1, Z=Ll3, D(Z)=[a42]

fors €(1, 2), 7, =Ko, + Koy, +20,; + (3 —5)0,,, <, =—lo,,]

ats =2, Z=1L,, D(Z)=[al3]

fors €(2,5), 7, =Ko, + Ko,y + (4 —5)0, + 3-5)0,,, ¢, =—[o, +o42]
ats=5, Z=L3l’ D(Z)= _[042]
fors € (5, 6), 7, =Ko, + Koy, + (4 —3) 0,3 —20,,, ¢, =— [031]

ats =6, Z=1L,, DZ) = — [013]
fors€(6,7], 7, =Ko,, + Koy, —20,; —20,,. ¢ = 0.

It is easy to check that this information is all compatible. Note also that,
for £ = [0, 1) and (6, 7], u~ 1 (#) is the product T* x S! x £ with form w equal
either to (Ko12 + Ka34 + 2013 + 2042) ® df A ds or to (Ko12 + Ka34 + 2031 +
+ 2024) @ df A ds. Hence u~!(0) may be glued to 4~ ! (7) by the diffeomorphism
of T* which interchanges x! with x> and x? with x*.

We next describe what happens near the critical levels. For A = 1, 2, 5 and
6 we will construct a piece P, of symplectic manifold which lies over [A —e,
X + €] and glues to the parts of X which are already defined. By Lemma 4, P,
will glue to X provided that the forms 7, on the base agree. In fact, it suffices
to do this at A = 1 and 2 since the diffeomorphism of 7% which interchanges
x! with x* and x? with x> takes T to—71 . Thus the singularity as s increases
through 1 is diffeomorphic to the singularity as s decreases through 6, and simi-
larly for 2 and 5.

The singularity ats = 1

We define P, as a product L,; x Y where Y is a 4-dimensional symplectic
manifold with an $! action which has a point singularity. To construct Y, let
us first consider the manifold S? with a symplectic form p of total area 1 which
is invariant under the usual action of S! by rotation. Then the moment map
takes S? onto [0, 1] and has one minimum at m say, and one maximum at M.
Next consider S? x S? with symplectic form 2,01 ®p,, where py and p, are
copies of p, and with the diagonal action of S!, Then the moment map u is
2y1 + u, where By is the moment map for the ith factor with respect to n;
There are now four fixed points which occur at 0, 1, 2, and 3 in the order m x m,
m x M, M xmand M x M. It is easy to check that the level sets for s between
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1 = p(m x M) and 2 = u(M x m) are diffeomorphic to S! x §? since, for each
point on the second sphere there is a circle of possible points on the first sphere.
Thus the corresponding circle bundle is a product. In contrast, the level sets
for s > 2 are 3-spheres, and, by Lemma 3, the circle bundle has Euler characte-
ristic — 1. Set V=u"1([2 — ¢, 2 + €]) C 5?2 x S? with the induced symplectic
form, where 0 < € < 1. By Lemma 5, V projects onto S2. Cut out from V the
inverse image of a 2-disc in S? which avoids the unique critical value of this
projection. This inverse image is an S'invariant set diffeomorphic to D? x S! x
x [— €, €] with product symplectic form, and we may glue back in its place a
copy of (T? —Int(D?)) x S! x [ €, €] with product symplectic form o © df A ds.
This last is the manifold we call Y. Note that Y N u~1([— ¢, 0)) is a product
T2 x 8§ x [— €, 0). Clearly, we may choose ¢ so that the induced symplectic
form o on Y integrates to 1 over 72 x pt. x [— €]. It follows from formula (b)
above that, when s > 0, the induced form 7, on the base T? has integral 1 — s.

By Lemma 5, there is a smooth map # of Y onto T2 x [— €, €] whose fibers
are the orbits of S!. Thus, if x* and x? are coordinates on T? the forms dx*
and dx2 pull back to 1forms which we will call o* and o on Y. We now set
P, equal to the product T? x Y with symplectic form w, = Kdx! n o? +
+ Kdx® a o + 2dx! A dx® + 25, where x! and x3 are the coordinates on the
first T2 -factor. It is easy to check that w, is indeed symplectic. Moreover P,
does glue to X. As the notation indicates, the T2 factor in P, should be identified
with L, in T* and the base 72 of ¥ with L,,

The singularity ats = 2

This time v~ is not trivial, for the circle bundle S(¢v7) > Z = L42 may be iden-
tified with the restriction of the bundle F - T4 to L,,, and so it has Euler
characteristic — 1. We put P, = S x Y so that P, fibers over L,, with
fiber Y. The quotient space ofP by the Sl-action is the manifold L,, x T- X

x [— €, €], and it is easy to check that the Chem class of the S!-bundle at —e
s — [042] while that at € is — [o,, + 013], where we identify the T2 factor
with L,;. We will denote the lift of the forms dx’ to P, by o fori=1,...,4.

Our next task is to extend the form ¢ over P,. Note that § —a! A o is exact,
so .that it may be written as dv for some 1-form y which we may choose to vanish

at the unique singular point of Y. Consider the 1-form
p=2%.\opr)v,

on P,, where pr is the fibration P2 =Ly, [)\i] is a partition of unity subordinate
to a trivializing cover [U,] for this fibration, and 7, is the pull-back to U, x ¥ ~
=pr! (U,) C P, of v. Since the local trivializations must fixed the unique critical
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point in each fiber, i(v) dp = 0 for any vector v tangent to Z. Also, dp restricts
to & —a! A &® on each fiber Y.
Now consider the form
w, =Ko no? + Ke® no +20'n0d +at aa? +2dp
A

on pP,. We claim that, if X is sufficiently large, this is symplectic. For it is clearly
non-degenerate on the restriction of TP2 to Z, and hence near Z. And, away
from Z, one can use the argument of [McD 2] Lemma 3.3. Further, one can
check directly that the reduced forms ?, on the base L, x L13 are cohomologous -
to 7, for — e < s < 0. It follows from Lemma 5 that this must also hold
for 0 < s < e. Since ?J — Ty, depends only on dp, one can choose alarge
K so that the forms ¢ 7, + (1 — ) 7, are symplectic for # between 0 and 1
and s between — € and — €/2 and €/2 and €. Moser’s theorem then implies that
the forms 7, and 7, are diffeomorphic for each s in the given range, so that
P, can be patched to X as required.
This completes the construction, and hence the proof of Proposition 1.
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